VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles∗

نویسندگان

  • Halbert White
  • Tae-Hwan Kim
  • Simone Manganelli
چکیده

This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple version of the model using market equity returns data to analyse spillovers in the values at risk (VaR) between a market index and financial institutions. We construct impulse-response functions for the quantiles of a sample of 230 financial institutions around the world and study how financial institution-specific and system-wide shocks are absorbed by the system. We show how our methodology can successfully identify both in-sample and out-of-sample the set of financial institutions whose risk is most sentitive to market wide shocks in situations of financial distress, and can prove a valuable addition to the traditional toolkit of policy makers and supervisors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measure of financial risk using conditional extreme value copulas with EVT margins

In this paper we propose a method to estimate the value-at-risk (VaR) of a portfolio based on a combination of time series, extreme value theory and copula fitting. Given multivariate financial data, we use a univariate ARMA-GARCH model for each return series. We then fit a generalized Pareto distribution to the tails of the residuals to model the distributions of marginal residuals, followed b...

متن کامل

Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: an Extreme Value Approach

We propose a method for estimating VaR and related risk measures describing the tail of the conditional distribution of a heteroscedastic nancial return series. Our approach combines quasi maximum likelihood tting of GARCH models to estimate the current volatility and extreme value theory (EVT) for estimating the tail of the innovation distribution of the GARCH model. We use our method to estim...

متن کامل

CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles

Value at risk (VaR) is the standard measure of market risk used by financial institutions. Interpreting the VaR as the quantile of future portfolio values conditional on current information, the conditional autoregressive value at risk (CAViaR) model specifies the evolution of the quantile over time using an autoregressive process and estimates the parameters with regression quantiles. Utilizin...

متن کامل

Predicting extreme VaR: Nonparametric quantile regression with refinements from extreme value theory

This paper studies the performance of nonparametric quantile regression as a tool to predict Value at Risk (VaR). The approach is flexible as it requires no assumptions on the form of return distributions. A monotonized double kernel local linear estimator is applied to estimate moderate (1%) conditional quantiles of index return distributions. For extreme (0.1%) quantiles, where particularly f...

متن کامل

Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory

A framework is introduced allowing to apply nonparametric quantile regression to Value at Risk (VaR) prediction at any probability level of interest. A monotonized double kernel local linear estimator is used to estimate moderate (1%) conditional quantiles of index return distributions. For extreme (0.1%) quantiles, nonparametric quantile regression is combined with extreme value theory. The ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012